There are a couple fundamental pieces of supplies ready for HMA compaction: (1) the paver screed, (2) the steel wheel roller and (3) the pneumatic tire roller. Each piece of supplies compacts the HMA by a few foremost denotes:
- By connecting its weight to the HMA surface and packing the material underneath the ground contact dominion. In light of the fact that this clamping will be more fabulous for longer periods of contact, easier supplies speeds will handle more layering. Doubtlessly, higher supplies weight will likewise build packing.
- By making a shear anxiety among the packed material underneath the ground contact domain and the neighboring uncompressed material. When joined with supplies speed, this produces a shear rate. Bringing down gear speed can diminishing the shear rate, which expands the shearing anxiety. Higher shearing burdens are more equipped for of improving conglomerate into additional thick arrangements.
These several method of densifying HMA are frequently pointed to aggregately as compactive enterprise. This piece weighs in on the paver screed, the steel wheeled roller (both static and vibratory) and the pneumatic tire roller as they have an association with HMA compaction. The Roller Variables item talks about how each and every sort of roller might be utilized in a mixed go at to compaction.
Paver Screed
The paver screed has previously been discussed in the asphalt paver article. Of additional note here is that approximately 75 to 85 percent of the theoretical maximum density of the HMA will be obtained when the mix passes out from under the screed (TRB, 2000[1]).
Steel Wheel Rollers
Steel wheel rollers are self-propelled compaction devices that use steel drums to compress the underlying HMA. They can have one, two or even three drums, although tandem (2 drum) rollers are most often used. The drums can be either static or vibratory and usually range from 86 to 215 cm (35 to 85 inches) in width and 50 to 150 cm (20 to 60 inches) in diameter. Roller weight is typically between 0.9 and 18 tonnes (1 and 20 tons) (see Figures 1 and 2).
Also to their particular weight, some steel wheel rollers might be ballasted with either sand or water to build their weight and along these lines, compactive deliberation. Admitting that this ballasting is an equitably straightforward methodology (Figure 5), it is as a rule done before rolling operations begin and infrequently in the midst of rolling operations. By reason of pavement concrete folio adheres to steel wheels, most steel wheel rollers spray water on the drums to avert HMA from staying, and are outfitted with a transverse bar on every drum to wipe off HMA (Video 1). Note, on the other hand, that this water will cool the HMA and can decrease the time ready for compaction.
Vibratory Steel Wheel Rollers
Some steel wheel rollers are equipped with vibratory drums. Drum vibration adds a dynamic load to the static roller weight to create a greater total compactive effort. Drum vibration also reduces friction and aggregate interlock during compaction, which allows aggregate particles to move into final positions that produce greater friction and interlock than could be achieved without vibration. Roller drum vibration is produced using a rotating eccentric weight located in the vibrating drum (or drums) and the force it creates is proportional to the eccentric moment of the rotating weight and the speed of rotation (TRB, 2000[1]). Operators can turn the vibrations on or off and can also control amplitude (eccentric moment) and frequency (speed of rotation). Vibration frequency and amplitude have a direct effect on the dynamic force (and thus the compactive force) as shown in Table 1.
Parameter | Typical Values | Effect on Dynamic Force |
Frequency | 1,600 to 3,600 vibrations per minute | Frequency µ (Dynamic Force)2 |
Amplitude | 0.25 to 1.02 mm (0.01 to 0.04 inches) | Amplitude µ Dynamic Force |
The ideal vibratory frequency and amplitude settings are a compromise based on desired mat smoothness, HMA characteristics and lift thickness. Low vibration frequencies combined with high roller speeds will increase the distance between surface impacts and create a rippled, unsmooth surface. In general, higher frequencies and lower roller speeds are preferred because they decrease the distance between surface impacts, which (1) increases the compactive effort (more impacts per unit of length) and (2) provides a smoother mat. The recommended impact spacing is 33 – 37 impacts per meter (10 – 12 impacts per foot). Table 2 shows basic guidance for vibratory settings.
HMA/Mat Characteristic | Frequency | Amplitude |
Thin Lifts (< about 30mm (1.25 inches)) | Operate in static mode. Under vibratory mode, as the pavement increases in density the drums may begin to bounce, which may cause the HMA to shove and become less dense. Also, some of the aggregates may be crushed. | |
Lifts between 30 mm and 65 mm (1.25 and 2.5 inches) | High frequency | Low amplitude |
Lifts beyond 65 mm (2.5 inches) | High frequency | Higher amplitude |
Stiff (more viscous) HMA | High frequency | Higher amplitude |
As a general rule-of-thumb, a combination of speed and frequency that results in 33 – 37 impacts per meter (10 – 12 impacts per foot) is good. At 3000 vibrations/minute that gives a speed of 4.5 – 5.5 km/hr (2.8 – 3.4 mph).
When density is difficult to quickly achieve with a vibratory steel wheel roller, the tendency may be to increase vibratory amplitude to increase compactive effort. However, high amplitude is only advisable on stiff mixes or very thick lifts that can support the increased amplitude without fracturing the constituent aggregate particles. For typical mix types and lift thicknesses a better solution is usually to maintain low amplitude vibrations and increase the number of roller passes at low amplitude.
Vibratory steel wheel rollers offer potential compaction advantages over static steel wheel rollers but they also require the operator to control more compaction variables (amplitude, frequency and vibratory mode use) and there are certain situations under which they must be used with caution (e.g., over shallow underground utilities, in residential areas, thin overlays).
In general, steel wheel rollers provide the smoothest mat finish of all compaction equipment. When operated in the vibratory mode, they also provide substantial compactive effort.
Pneumatic Tire Rollers
The pneumatic tire roller is a self-propelled compaction device that uses pneumatic tires to compact the underlying HMA. Pneumatic tire rollers employ a set of smooth (no tread) tires on each axle; typically four on one axle and five on the other. The tires on the front axle are aligned with the gaps between tires on the rear axel to give complete and uniform compaction coverage over the width of the roller. Compactive effort is controlled by varying tire pressure, which is typically set between 400 kPa (60 psi) and 800 kPa (120 psi) (TRB, 2000[1]).
Asphalt binder tends to stick to cold pneumatic tires but not to hot pneumatic tires. A release agent (like water) can be used to minimize this sticking, however if asphalt binder pickup (the asphalt binder sticking to the tires) is not permanently damaging the mat it is better to run the roller on the hot mat and let the tires heat up to near mat temperature. Tires near mat temperature will not pick up an appreciable amount of asphalt binder. Insulating the tire area with rubber matting or plywood helps maintain the tires near mat temperature while rolling (Figure 6)
In addition to a static compressive force, pneumatic tire rollers also develop a kneading action between the tires that tends to realign aggregate within the HMA. This results in both advantages and disadvantages when compared to steel wheel rollers:
Advantages (Brown, 1984[2])
- They provide a more uniform degree of compaction than steel wheel rollers.
- They provide a tighter, denser surface thus decreasing permeability of the layer.
- They provide increased density that many times cannot be obtained with steel wheeled rollers.
- They compact the mixture without causing checking (hairline surface cracks) and they help to remove any checking that is caused with steel wheeled rollers.
Disadvantages
- The individual tire arrangement may cause deformations in the mat that are difficult or impossible to remove with further rolling. Thus, they should not be used for finish rolling.
- If the HMA binder contains a rubber modifier, HMA pickup (mix sticking to the tires) may be so severe as to warrant discontinuing use of the roller.
In summary, pneumatic tire rollers offer a slightly different type of compaction than steel wheel rollers. The arrangement of multiple tires on both axles serves to both compress and kneed the mat, which may or may not be advantageous over steel wheel rollers.
Saturday, 17 December 2011
//
Labels:
Engineering
//
0
comments
//
0 comments to "HMA compaction (PAVEMENT)"
vfg
Search
About This Blog
Popular Posts
-
The Fuji Instax Mini 25 and Instax Mini 7S are a couple of moment picture zoom lens utilizing Fuji's Visa measured moment picture. In th...
-
When I pulled the Fujifilm Instax 200 out of my picture clicker pack at a familiar Sunday outing to a neighborhood small time baseball amuse...
-
The above picture is one of the most famous picture in the world. If you are the requester band Rage Against The Machine, the picture above...
-
The hotel room sports a modern yet cozy design and everything you need is provided for. The bed is super comfortable and remains the thing I...
-
Radisson - Blu Hotel , Berlin Germany is the world's largest cylindrical aquarium , named Aquadom . It is 25 meters ...
Feedjit

Post a Comment